

Modelo UT371/372 Manual de Utilização

Visão Geral

AVISO

Para evitar choques elétricos ou danos pessoais, leia cuidadosamente a secção de "Informações de Segurança" e de "Regras para Operação em Segurança" antes de utilizar o medidor.

O multímetro digital UT58D (aqui referido como "o medidor") é um instrumento de medida de mão altamente fiável com um grande LCD de 3 1/2 dígitos. O medidor usa uma larga escala de circuitos integrados com dois conversores A/D integrados e inclui proteção de sobrecarga em todas as funções. O medidor possui 28 funções diferentes de medição. Para além de medir voltagem e corrente AC/DC, resistências, capacitância, transístores, díodos e continuidade, também possui leitura de indutância, *data hold*, proteção contra sobrecargas e modo *Sleep*.

Inspeção ao abrir a embalagem

Abra a embalagem e retire o medidor. Verifique cuidadosamente se os seguintes itens estão em falta ou danificados:

Item	Descrição	Quantidade
1	Manual de Operação	1 Unidade
2	Ponteiras de Teste	1 Par
3	Ficha Multi funções	1 Unidade
4	Garra de Teste	1 Unidade
5	Bolsa	1 Unidade
6	Pilhas 9V (NEDA 1604, 6F22, 009P)	1 Unidade

No caso de detetar a falta de algum artigo acima descrito ou se encontrar algo danificado, contacte o seu revendedor imediatamente.

Informações de Segurança

Este medidor está em conformidade com as normas IEC61010: Com um grau de poluição 2, categoria de alta voltagem CAT. II 1000V, CAT. III 600V) e duplo isolamento. CAT. II: nível local, aplicável, EQUIPAMENTO PORTÀTIL etc., com voltagens inferiores e transitórias a CAT. III. CAT. III: Nível de Distribuição, instalação fixa, com voltagens inferiores e transitórias a CAT. IV.

Utilize o medidor apenas e conforme este manual de utilização, caso contrário a proteção fornecida pelo medidor poderá ser afetada.

Neste Manual, um **AVISO** identifica condições e ações que podem colocar em risco o utilizador, o medidor ou o equipamento sob teste. Uma **NOTA** identifica a informação que o utilizador deverá ter em atenção. Os símbolos elétricos internacionais usados no medidor e neste manual serão explicados mais à frente.

Regras para Utilização Segura (1)

⚠ Aviso

Para evitar possíveis choques elétricos ou danos pessoais e evitar possíveis danos no medidor ou no equipamento sob teste, cumpra as seguintes regras:

- Antes de utilizar o medidor, inspecione a caixa. Não o utilize se este se encontrar danificado ou se a caixa (ou parte dela) removida. Procure por rachadelas ou danos nos plásticos. Preste atenção ao isolamento á volta dos terminais.
- Inspecione as pontas de prova, procurando por isolamentos defeituosos ou metal exposto. Verifique também a continuidade destas. Substitua as pontas danificadas apenas com um modelo idêntico ou com as mesmas especificações elétricas antes de utilizar o medidor.
- Não aplique mais do que a voltagem nominal, conforme marcado no medidor, entre os terminais ou entre qualquer um dos terminais e o chão.
- O seletor rotativo deverá ser posicionado corretamente e não deverá ser reposicionado enquanto durar a medição, para prevenir danos.
- Quando o medidor estiver a trabalhar numa voltagem eficaz acima dos 60V DC ou 30V rms AC, deverá tomar especial atenção, pois existe o perigo de choque elétrico.
- Use os terminais, funções e alcances adequados nas suas medições.
- Se o valor a medir for desconhecido, use a posição de medida máxima e reduza-a passo a passo no seletor, até obter uma leitura satisfatória.
- Não utilize ou armazene o medidor em ambientes de alta temperatura, húmidos, explosivos, inflamáveis ou com um forte campo magnético. O desempenho do medidor pode deteriorar-se após humidificar.
- Quando utilizar as pontas de prova, mantenha os dedos atrás das proteções para os dedos.
- Desligue a energia do circuito e descarregue todos os condensadores de alta-voltagem antes de testar a resistência, continuidade, díodos, capacitância ou corrente.
- Antes de medir corrente, verifique os fusíveis do medidor e desligue o circuito e antes de ligar o medidor ao circuito.
- Subsitua a pilha assim que o indicador de bateria apareça. Com pouca bateria, o medidor pode efetuar falsas leituras, podendo levar a choques elétricos ou danos pessoais.
- Remova as ponteiras de teste e a ficha multi funções do medidor e desligue-o antes de o abrir.
- Quando efetuar a manutenção ao medidor, use apenas peças suplentes do mesmo modelo ou com especificações elétricas idênticas.
- O circuito interno do medidor não deverá ser alterado para evitar danos no medidor ou outro qualquer acidente.
- Para limpar a superfície do medidor, deverá utilizar um pano macio e um detergente neutro. Não utilize nenhum solvente ou diluente para prevenir a corrosão, danos ou acidentes.
- Desligue o medidor quando não o utilizar e retire as baterias quando não o utilizar durante longos períodos de tempo.
- Verifique constantemente as pilhas pois poderão "babar" quando não utilizadas durante algum tempo; substitua as pilhas assim que estas se "babem". Uma pilha em mau estado irá danificar o medidor.

Símbolos Elétricos Internacionais

~	AC (corrente alterna)		
•••	DC (corrente contínua)		
÷	Terra		
	Duplo isolamento		
	Deficiência na bateria interna		
$\overline{\mathbb{A}}$	AVISO. Consulte o manual		
	Díodo		
7	AC ou DC		
=	Fusível		
A	Teste de continuidade		
(E	Conforme normas da União Europeia		

Estrutura do Medidor (ver figura 1)

- ① Ecrã LCD
- **2** ENERGIA
- ③ Botão **HOLD**
- 4 Botão Rotativo
- (5) Terminal de Entrada COM
- 6 Terminal de Entrada 20A
- 7 Terminal de Entrada mA
- (8) Outro Terminal de Entrada.

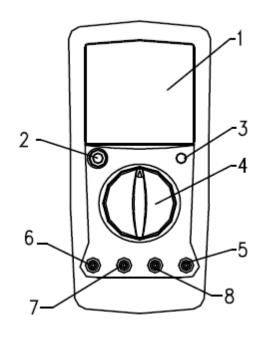


Figura 1

Seletor Rotativo

Abaixo, segue uma tabela com informação relativa às posições do botão rotativo:

Posição	Função
v 	Medição de Voltagem DC
v~	Medição de Voltagem AC
hFE	Teste de Transístores
A~	Medição de Corrente AC
A	Medição de Corrente DC
Fcx	Teste de Capacitância
HLx	Teste de Indutância
	Teste de Díodos
A	Teste de Continuidade
Ω	Medição de Resistências

Outros Botões

Abaixo, segue uma tabela com informação relativa às operações dos botões:

Botão	Operação efetuada	
POWER (Botão Amarelo)	Liga e desliga o medidor.Pressione uma vez para ligar.Pressione novamente para desligar.	
HOLD (Botão Azul)	 Pressione uma vez para entrar em modo HOLD Pressione novamente para sair do modo Quando em modo HOLD, será apresentado o símbolo e o valor presente apresentado. 	

Símbolos do Ecrã (ver figura 2)

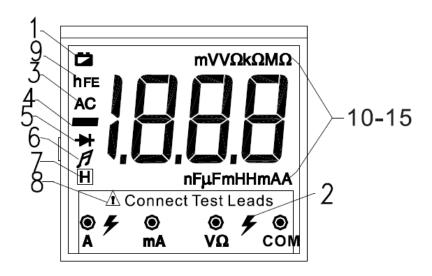


Figura 2

Nº.	Símbolo	Significado		
1		Pouca bateria. ⚠ Aviso: Para evitar falsas leituras, substitua as pilhas assim que o indicador de pouca bateria apareça.		
2	*	Símbolo de Aviso.		
3	AC	Indicador de voltagem ou corrente AC. O valor apresentado é o valor médio.		
4	_	Indica leitura negativa.		
5	→ ⊢	Teste de díodos.		
6	A	O besouro de continuidade está ligado.		
7	H	Função <i>Date Hold</i> ativada.		
8	Connect Terminal	Indicador de ponteiras conectadas nos terminais diferentes.		
9	hFE	A unidade de Teste de Transístores		
	mA, A	A: Amperes: a unidade de corrente. mA: Miliampere: 1 x 10 ⁻³ ou 0.001 amperes.		
	mV, V	V: Volts: A unidade da voltagem. mV: Milivolt: 1 x 10 ⁻³ ou 0.001 volts.		
10	Ω, kΩ, ΜΩ	Ω : Ohm: a unidade de resistência. k Ω : kilohm: 1 x 10 ³ ou 1000 Ohms. M Ω : Megaohm: 1 x 10 ⁶ ou 1,000,000 ohms.		
	μF nF	F: Farad: a unidade de capacitância. µF: Microfarad: 1 x 10 ⁻⁶ ou 0.000001 farads. nF: Nanofarad: 1 x10 ⁻⁹ ou 0.000000001		
	mH, H	H: Henry. A unidade da indutância. mH: Milihenry. 1 x 10 ⁻³ ou 0.001 Henry.		

Operação de Medição

A. Medição de Voltagem AC e DC (ver figura 3)

⚠ Aviso

Para evitar danos pessoais ou no medidor derivado a choques elétricos, nunca tente medir voltagens acima dos 1000V ou 1000V rms apesar de conseguir obter as leituras.

Alcance da voltagem DC: 200mV, 20V, 200V e 1000V. Alcance da voltagem AC: 2V, 200V e 1000V

Para medir voltagem DC, conecte o medidor conforme o seguinte:

- Insira a ponteira vermelha no terminal de entrada V e a ponteira preta no terminal de entrada COM.
- Conecte as ponteiras paralelamente cruzando o objeto a ser medido. O valor medido é apresentado no ecrã.

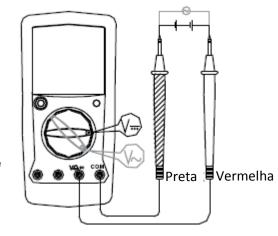


Figura 3

- Se o valor da voltagem a medir for desconhecido, use a posição de medida máxima (1000V) e reduza passo a passo até obter uma leitura satisfatória.
- O LCD indica "1" se o alcance selecionado estiver sobrecarregado e requer que se selecione uma medida maior de forma a obter uma leitura correta.
- Em cada medida, o medidor tem uma impedância de entrada de aproximadamente 10M. O efeito de carga pode causar erros de medição em circuitos de alta impedância. Se a impedância do circuito for igual ou inferior a 10k, o erro é negligente (0.1% ou menos).
- Quando a medição da voltagem DC estiver completa, desligue a ligação entre as ponteiras e o circuito sob teste, e remova as ponteiras dos terminais de entrada do medidor.

B. Medição de Corrente AC e DC (ver figura 4)

⚠ Aviso

Nunca tente medir corrente quando a voltagem do circuito aberto entre os terminais e a terra seja superior a 60V DC ou 30V RMS. Se o fusível se queimar durante a leitura, o medidor ou o utilizador podem ser afetados. Utilize terminais, funções e alcances próprios à medição. Quando as ponteiras de prova estão ligadas aos terminais de corrente não as junte em nenhum circuito.

As medições de corrente DC têm 3 posições:

- 2mA, 200mA e 20A

As medições de corrente AC têm 3 posições:

- 2mA, 200mA e 20A

Para medir corrente, execute da seguinte forma: 1. Desligue a energia do circuito e descarregue todos os condensadores de alta-voltagem.

2. Insira a ponteira vermelha no terminal de 20A ou mA e a ponteira preta no terminal COM. Quando medir corrente abaixo dos 200mA, por favor insira a ponteira vermelha no terminal mA. Quando medir 200mA ou mais, insira a ponteira vermelha no terminal de 20A.

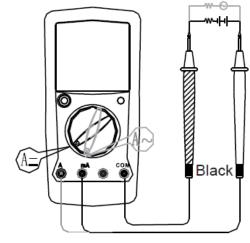


Figura 4

- 3. Defina o seletor rotativo na posição de medição apropriada no alcance A → ou A →.
- 4. Corte o "caminho" de corrente a ser medido. Conecte a ponteira vermelha ao lado positivo do corte e a ponteira preta ao lado negativo do corte.
- 5. Ligue a energia do circuito. Os valores medidos irão ser apresentados no display.

- Se o valor da corrente for desconhecido, utilize a posição máxima de medição e reduza o alcance passo a passo até obter um resultado satisfatório.
- Por razões de segurança, o tempo de medição para altas correntes deverá ser inferior a 10 segundos e o intervalo de tempo entre 2 medições deverá ser superior a 15 minutos.
- Quando a medição de corrente estiver completa, desligue a ligação entre as ponteiras e o circuito sob teste e remova as ponteiras do medidor.

C. Medição de Resistências (ver figura 5)

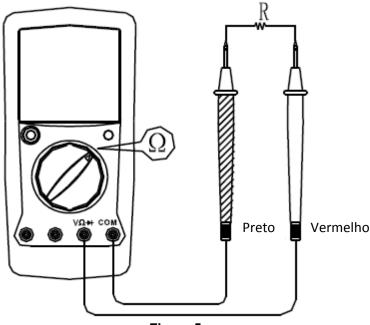


Figura 5

⚠ Aviso

Para evitar danos no medidor ou nos aparelhos a ser testados, desligue a corrente dos circuitos e descarregue todos os condensadores de alta-voltagem antes de medir as resistências.

Os modos de medição de resistências são: 200Ω , $2k\Omega$, $200k\Omega$, $2M\Omega$ e $20M\Omega$. Para medir resistências, proceda da seguinte forma:

Medição:

- 1. Insira a ponteira vermelha no terminal de entrada V e a ponteira preta no terminal COM.
- 2. Ajuste o seletor central para uma posição de medição apropriada.
- 3. Conecte as ponteiras paralelamente cruzando o objeto a ser testado.

O valor medido é apresentado no display.

Nota:

As ponteiras poderão conter uma margem de erro de 0.1 a 0.3 nos casos de medição de resistência lenta (200Ω). Para obter leituras precisas em resistências baixas, conecte um terminal ao outro antecipadamente e grave a medição obtida (esta medição será apelidada de X). (X) é o valor de resistência adicional das ponteiras. Então, utilize a seguinte equação: Valor de resistência media (Y) - (X) = leitura precisa da resistência.

- Para resistências altas (>1MΩ), é normal demorar vários segundos até obter uma leitura estável.
- Quando não houver entrada, por exemplo, num circuito aberto, o medidor apresenta "1" no display.
- Quando terminar a medição de resistências, desconecte a ligação entre as ponteiras de prova e o circuito sob teste, e remova as ponteiras de teste dos terminais do medidor.

D. Medição de Díodos e Continuidade (ver figura 6)

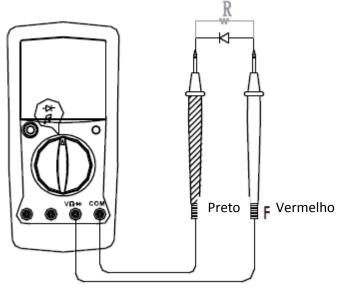


Figura 6

△ Aviso

Para evitar danos no medidor ou nos aparelhos a ser testados, desligue a corrente dos circuitos e descarregue todos os condensadores de alta-voltagem antes de medir os díodos. Para evitar danos pessoais, nunca tente insera voltagens superiores a 60V DC ou 30V rms em AC.

Medição de Díodos

Use o teste de díodo para verificar díodos, transístores, e outros semicondutores. O teste envia corrente através da junção do semicondutor e então mede a voltagem. Uma boa junção de silicone cai cerca de 0.5V e 0.8V.

Para testar um díodo fora de um circuito, conecte o Medidor da seguinte forma:

- 1. Insira a ponteira vermelha no terminal $V\Omega$ e a ponteira preta no terminal COM
- 2. Ajuste o seletor rotativo para → A.
- 3. Para quedas de voltagem avançadas em qualquer semicondutor, coloque a ponteira vermelha no ânodo e a ponteira preta no cátodo.

O valor medido será apresentado no display.

- Num circuito, um bom díodo ainda deverá produzir uma queda de voltagem avançada de 0,5V a 0,8V; no entanto, a leitura de voltagem invertida pode variar dependendo da resistência de outros caminhos entre as pontas de prova.
- Conecte as ponteiras de prova nos terminais apropriados conforme descrito acima de forma a evitar erros. O LCD irá apresentar "1" indicando assim circuito aberto para conexões incorretas. A unidade do díodo é o Volt (V), apresentando o valor de queda de voltagem da conexão-positiva.
- A voltagem de circuito aberto é cerca de 2,8V.
- Quando o teste ao díodo estiver completo, desligue a ligação entre as ponteiras e o circuito sob teste e retire as ponteiras dos terminais do medidor.

Teste de Continuidade

Para testar a continuidade, ligue o medidor conforme o seguinte:

- 1. Insira a ponteira vermelha no terminal V e a preta no terminal COM.
- 2. Ajuste o seletor rotativo para $\rightarrow \mathcal{A}$.
- 3. Ligue as duas ponteiras através do objeto a ser medido
- 4. O besouro não soará se a resistência do circuito sob teste for <70.

O valor de resistência do circuito testado é simultaneamente apresentado no ecr \tilde{a} e a unidade é Ω .

Nota

• Quando terminar o teste de continuidade, desligue a ligação entre as pontas de prova e o circuito sob teste, e retire as ponteiras dos terminais no medidor.

E. Teste de Indutância (ver figura 7)

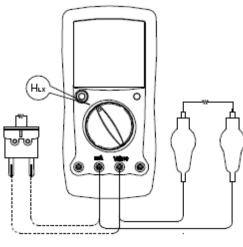
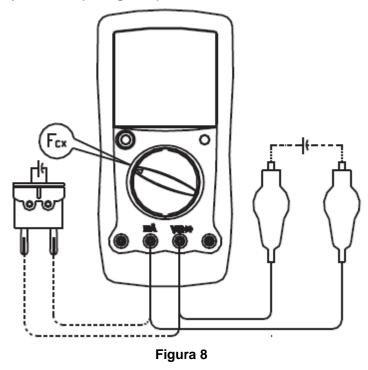


Figura 7

△ Aviso

Certifique-se de que a indutância testada se encontra afastada de campos eletromagnéticos elevados para obter medições precisas.

As medições de indutância têm quatro posições no seletor rotativo 2mH, 20mH, 20mH e 20H.


Para testar a indutância, conecte o medidor da seguinte forma:

- 1. De acordo com o tamanho das ponteiras do objeto a testar, insira as fichas de multi funções ou garras de teste nos terminais mA e $V\Omega$.
- 2. Ajuste o seletor rotativo para a posição de medição HLx.
- 3. Insira o objeto testado no jack correspondente da ficha multi funções ou ligue a garra de teste do objeto a ser medido.

O valor medido é apresentado no display.

- Se o valor da indutância a ser medido for desconhecido, selecione a posição de medição mais elevada, e reduza passo a passo até obter uma medição satisfatória.
- Quando o teste de indutância estiver concluído, remova a ficha multi funções ou a garra do terminal do medidor.

F. Medição de Capacitância (ver figura 8)

⚠ Aviso

Para evitar danos no medidor ou no equipamento sob teste, desligue a energia do circuito e descarregue todos os condensadores de alta voltagem antes de medir capacitância. Use a função de voltagem DC para confirmar que o condensador está descarregado.

Para evitar danos pessoais, nunca tente introduzir voltagens superiores a 60V DC ou 30V rms em AC.

A medição de capacitância contém 4 posições de medição no seletor rotativo: 20nF, 200nF, 2μF e 100μF.

Para efetuar medições de capacitância, ligue o medidor da seguinte forma:

- 1. De acordo com o tamanho das ponteiras do objeto selecione as fichas multi funções ou as garras para inserir nos terminais mA $V\Omega$.
- 2. Ajuste o seletor rotativo para uma posição de medição apropriada em Fcx.
- 3. Insira o objeto testado no jack correspondente da ficha multi funções ou conecte as garras no objeto a ser medido.

O valor medido será apresentado no display.

- Se o valor da capacitância for desconhecido, use a posição de medição máxima e reduza-a passo a passo até obter uma leitura satisfatória.
- Quando o condensador testado estiver em curto ou com o seu valor sobrecarregado, o LCD irá apresentar "1".
- Para minimizar o erro de medição causado pelo condensador distribuído, as ponteiras deverão ser o mais curtas possível.
- Para aumentar a precisão, especialmente quando medir capacitância abaixo dos 20nF, a medição correta seria subtrair o valor de circuito das ponteiras do valor apresentado.
- É normal demorar mais tempo, quando mede um condensador de alta capacidade.
- Para testar condensadores com polaridade, ligue a ponteira ou garra vermelha ao ânodo e a preta ao cátodo.
- Quando o teste de capacitância acabar, remova as pontas das fichas multi funções e remova estas dos terminais do medidor.

G. Medição de Transístores (ver figura 9)

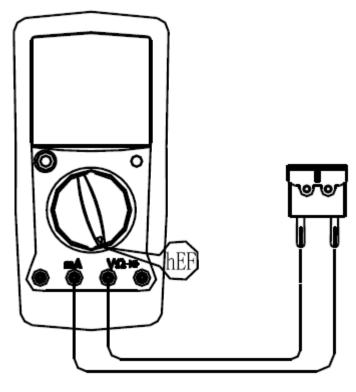


Figura 9

△ Aviso

Para evitar danos pessoais, nunca tente introduzir voltagens superiores a 60V DC ou 30V rms em AC.

Para efetuar medições em transístores, conecte o medidor da seguinte forma:

- 1. Insira a ficha multi funções nos terminais VΩ e mA.
- 2. Ajuste o seletor rotativo para o raio hFE.
- 3. Insira o transístor do tipo NPN ou PNP a ser testado no jack correspondente da ficha multi funções.
- 4. Será apresentado o valor do transístor medido mais próximo.

Nota

• Quando a medição do transístor estiver concluída, remova o transístor testado da ficha multi funções e remova esta do terminal do medidor.

Modo SLEEP

Para preservar a vida útil das pilhas, o medidor desliga-se automaticamente se não ajustar o seletor rotativo ou pressionar qualquer botão durante 15 minutos. Quando o medidor está em modo SLEEP, apenas consome 10mA de corrente. Para ativar o medidor, pressione o botão POWER 2 vezes.

Utilização em Modo HOLD

⚠ Aviso

Para evitar a possibilidade de choques elétricos, não utilize o modo HOLD para determinar se os circuitos estão sem energia. O modo HOLD não irá capturar leituras instáveis ou ruidosas.

Deverá utilizar o modo HOLD da seguinte forma:

- Pressione HOLD para entrar no modo HOLD
- Pressione HOLD novamente para sair do modo HOLD
- Enquanto no modo HOLD, o símbolo 🛮 é apresentado.

Especificações Gerais

- Voltagem máxima entre os terminais e terra:
 - Consulte os diferentes alcances de proteção de voltagem de entrada.
- A Fusível de proteção no terminal de entrada mA:
 - Versão CE: 0,5A, 250V rápido, Ø5x20mm
- ⚠ Terminal de Entrada de 20A: sem fusível
- Display máximo: 1999, atualiza 2-3 vezes por segundo
- Alcance: manual
- Apresentação de polaridade: automática
- Sobrecarga: "1"
- Símbolo de insuficiência de bateria:
- Data Holding:
- Temperatura:
 - Em operação: 0~40°C (32~104°F)
 - Em armazenamento: -10~50°C (14~122°F)
- Humidade relativa:
 - ≤75% @ 0°C ~ abaixo dos 30°C
 - ≤ 50% @ 30°C ~40°C.
- Altitude:
 - Em operação: 2'000m
 - Em armazenamento: 10'000m
- Compatibilidade Eletromagnética: num campo de radio de 1 V/m, a precisão geral = precisão específica + 5% de alcance; num campo de radio superior a 1 V/m, sem precisão geral ou específica.
- Tipo de bateria: 1 unidade de 9V (NEDA1604, 6F22 ou 006P).
- Dimensões: 179 x 88 x 39mm.
- Peso: aproximadamente 380g (incluindo pilha e bolsa)
- Segurança/Conformidades: padrões de duplo isolamento e Sobrevoltagem IEC61010 CAT II 1000V, CATIII 600V.
- Certificado: €

Especificações de Precisão

Precisão: +- (a% leitura + b dígitos) garantia de 1 ano.

Temperatura de operação: 18°C ~28°C

Humidade relativa: ≤75%RH

A. Voltagem DC

Alcance	Resolução	Precisão	Proteção de Sobrecarga
200mV	0,1mV		250V DC/AC
20V	0,01V	+-(0,5+1)	
200V	0,1V		1000V rms
1000V	1V	+-(0,8%+2)	

Nota:

Impedância de entrada: aprox. $10M\Omega$

B. Voltagem AC

Alcance Resolução		Precisão	Proteção de Sobrecarga
2V	0,001V	. (0.99/ .2)	
200V	0,1V	+-(0,8%+3)	1000V AC
1000V	1V	+-(1,2%+3)	

Nota:

- Impedância de entrada: aprox. 10MΩ
- Resposta de frequência: 40~400Hz
- Apresenta valor efetivo de onda sinusoidal (valor médio de resposta)

C. Corrente DC

Alcance	Resolução	Precisão	Proteção de Sobrecarga
2mA	0,001mA	+-(0,8%+1)	Versão CE: Fusível 0,5ª,
200mA	0,1mA	+-(1,5%+1)	250V rápido, Ø5,20mm
20A	0,01A	+-(2%+5)	Sem fusível

Especificações de Precisão

Notas:

No raio de 20A:

Para medições inferiores a 10 segundos e para intervalos entre 2 medições superior que 15 minutos.

• Medição de Queda de Voltagem:

O alcance completo é de 200mV.

D. Corrente AC

Alcance	Resolução	Precisão	Proteção de Sobrecarga
2mA	1µA	+-(1%+3)	Versão CE: Fusível 0,5a,
200mA	0,1mA	+-(1,8%+3)	250V rápido, Ø5,20mm
20A	10mA	+-(3%+7)	Sem fusível

Nota:

- Resposta de frequência: 40~400Hz
- No raio de 20A:

Para medições inferiores a 10 segundos e para intervalos entre 2 medições superior que 15 minutos.

- Medição de Queda de Voltagem:
 - O alcance completo é de 200mV.
- Apresenta valor efetivo de onda sinusoidal (valor médio de resposta)

E. Teste de Resistência

Alcance Resolução		Precisão	Proteção de Sobrecarga
200Ω	0,1Ω	0,1Ω +-(0,8%+3) + Resistência de curto-circuito das ponteiras	
2kΩ	1Ω		250V rms
200kΩ	100Ω	+-(0,8%+1)	2007 11110
2ΜΩ	1kΩ		
20ΜΩ	10kΩ	+-(1%+5)	

Notas:

• Para obter leituras precisas quando efetuar medições de 200Ω, efetue antecipadamente curto-circuito nas ponteiras e memorize a medição obtida (chamando esta leitura de "X"). "X" é a resistência adicional das ponteiras. Depois, use a equação:

Valor da resistência medida (Y) – (X) = leitura precisa de resistência.

F. Teste de Díodos e Continuidade

Alcance	Resolução	Precisão	Proteção de Sobrecarga	Notas
Díodos		1mV		Voltagem de circuito aberto aprox. 2,8
Teste de Continuidade	A	1Ω	250V rms	O besouro não suará se a resistência do circuito for <70Ω

G. Indutância

Alcance	Resolução	Precisão	Proteção de Sobrecarga
2mH	0,001mH		
20mH	0,01mH	+-(2%+10)	250V rms
200mH	0,1mH		2507 1115
20H	10mH	+-(3%+10)	

Nota:

- A indutância testada: Q ≥ 10, resistência interna ≤ 1,3K.
- Quando a indutância testada for inferior a 1H, a leitura obtida serve apenas de referência.

H. Capacitância

Alcance	Resolução	Precisão	Proteção de Sobrecarga
20nF	0,01nF		
200nF	0,1nF	+-(2,5%+5)	250\/ rmc
2µF	1nF		250V rms
100µF	100nF	+-(5%+4)	

Notas:

Quando o condensador testado for ≥40μF, a leitura obtida serve apenas de referência.

I. Teste de Transístores

Alcance	Resolução	Precisão	Proteção de Sobrecarga
hFE	1β	O valor apresentado é o valor hFE (0~1000β) mais perto do transístor testado (NPN, PNP)	Ibo = 10μA Vce = 2,8V

Manutenção

Esta secção fornece informação básica relativa a manutenção incluindo a troca de fusíveis e pilhas/bateria.

⚠ Aviso

Não tente reparar o medidor a não ser que seja qualificado e possua a calibração relevante, teste de desempenho e informação de serviço. Para evitar choques elétricos ou danos no medidor, não coloque água na carcaça.

A. Serviço Geral

- Limpe o medidor periodicamente com um pano suave e um detergente neutro. Não utilize solventes químicos
- Limpar os terminais com algodão com detergente, pois a sujidade poderá afetar as leituras
- Desligue o medidor quando não o utilizar e remova a bateria quando não o utilizar durante longos períodos de tempo.
- Não armazene em lugares com humidade, altas temperaturas, explosivos, inflamáveis ou campos de grande magnetismo

B. Troca de Fusíveis (ver figura 10)

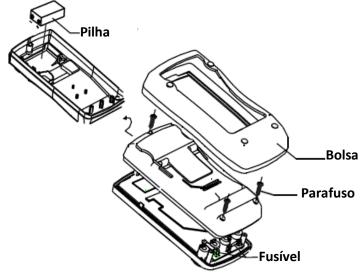


Figura 10

△ Aviso

Para evitar choques elétricos ou danos pessoais ou no medidor, utilize APENAS fusíveis específicos da seguinte forma:

Para substituir o fusível:

- 1. Desligue o medidor e remova todas as conexões dos terminais
- 2. Retire o medidor da bolsa
- 3. Remova os 3 parafusos da tampa inferior e separe a tampa de cima da caixa da de baixo.
- 4. Remova o fusível gentilmente do seu suporte, pegando por um dos lados.
- 5. Instale apenas fusíveis de um tipo e especificações equivalentes e certifique-se de que o fusível está firmemente encaixado no encaixe.

Fusível 1: 0,5^a, 250V rápido, Ø5x20mm

6. Encaixe a parte de cima da caixa com a parte de baixo e aperte novamente os 3 parafusos e mete-o na bolsa.

A troca de um fusível raramente irá ser necessária. Um fusível queimado resulta sempre de uma utilização imprópria.

C. Troca da Pilha

⚠ Aviso

Para evitar falsas leituras, que podem levar a choques elétricos ou danos pessoais, troque de pilhas assim que o ícone " " aparecer no ecrã.

Para trocar a pilha:

- 1. Desligue o medidor e remova todas as ligações dos terminais
- 2. Remova o medidor da bolsa.
- 3. Remova os 3 parafusos da tampa inferior e separe a tampa de cima da caixa da de baixo.
- 4. Retire a pilha.
- 5. Substitua-a por uma pilha de 9V nova (NEDA1604, 6F22 ou 0063P).
- 6. Encaixe a parte de cima da caixa com a parte de baixo e aperte novamente os 3 parafusos e mete-o na bolsa.

** FIM **

Este manual está sujeito a alterações sem aviso prévio.

©Copyright 2001 Uni-Trend International Limited.

Todos os direitos reservados.

Fabricante: UNI-TREND TECHNOLOGY (DONG GUAN) LIMITED

Morada: Dong Fang Da Dao, Bei Shan Dong Fang Industrial Development District, Hu Men

Town, Dong Guan City, Guang Dong Province, China

Sede: Uni-Trend International Limited

Morada: Rm901, 9/F, Nanyang Plaza 57 Hung To Road Kwun Tong Kowloon, Hong Kong

Tel: (852) 2950 9168 Fax: (852) 2950 9303 Email: info@uni-trend.com http://www.uni-trend.com

Traduzido por: Castro Electrónica, Lda

Morada: Rua Nossa Senhora de Fátima, Nº 385, 4535-217 Mozelos - PORTUGAL

Tel: (+351) 22 7453410

Email: geral@castroeletronica.pt http://www.castroelectronica.pt